A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates.

نویسندگان

  • S Wang
  • L-L Tay
  • H Liu
چکیده

Optical excitation of coupled plasmonic nanoparticles supports intense localized electromagnetic "hot-spots" which enable a variety of surface enhanced spectroscopies with the best known example being surface enhanced Raman scattering (SERS), currently of great interest for sensing applications. In this study, we present a novel SERS and electrical dual transduction chemical sensor based on gas-phase generated, negatively charged, silver nanoparticles self-assembled on glass slide forming a close-packed plasmonic monolayer thin-film that supports both SERS and electrical sensing. We demonstrate broad tunability of the localized surface plasmon resonance (LSPR) of the close-packed plasmonic nanoparticle monolayer thin-film sensors through control of the nanoparticle (NP) deposition time which directly influences the plasmonic coupling between neghibouring NPs. This broad tunability supports strong SERS activity from visible to near infrared (NIR) excitation wavelengths. We performed SERS and electrical measurements of a non-resonant molecule 4-mercaptobenzonitrile (4-MBN) as a sample Raman reporter molecule to determine the SERS enhancement factor of our SERS substrate. We measured an average SERS enhancement factor of 10(7) from our close-packed plasmonic nanoparticle monolayer thin-film sensor. Films which were grown below or above one nanoparticle monolayer both exhibited significantly lower SERS performance in one or more of SERS enhancement factor (EF), uniformity or repeatability. Our close-packed plasmonic nanoparticle monolayer thin-film sensors are highly uniform from point-to-point across the entire substrate and showed good reproducibility from batch-to-batch. These qualities are highly desirable for quantifiable detection of chemical and biological molecules. As an example application, this type of substrates provides an affordable and reliable sensing and identification capability for combatting new and emerging chemical and biological threats in support of security applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles

The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...

متن کامل

Self-assembled metal colloid films: two approaches for preparing new SERS active substrates.

In this paper, we propose two new approaches for preparing active substrates for surface-enhanced Raman scattering (SERS). In the first approach (method 1), one transfers AgI nanoparticles capped by negatively charged mercaptoacetic acid from a AgI colloid solution onto a quartz slide and then deoxidizes AgI to Ag nanoparticles on the substrate. The second approach (method 2) deoxidizes AgI to ...

متن کامل

Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO2@Ag nanoparticle substrate.

As one of the most toxic heavy metals, hexavalent chromium (Cr(VI)) has long been a concern due to its threats to human health and the environment. In this work, we develop a sensitive surface-enhanced Raman scattering (SERS) sensor for highly specific detection of Cr(VI) using hollow sea urchin-like TiO2@Ag nanoparticles (NPs). The TiO2@Ag NPs are functionalized with glutathione (GSH) and used...

متن کامل

Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit.

Highly sensitive SERS substrates with a limit of detection in the zeptomole (for Nile blue A and oxazine 720) range were fabricated through a bottom-up strategy. Ag nanoparticles (Ag NPs) were self-assembled onto glass slides by using 3-mercaptopropyltrimethoxysilane (MPTMS) sol-gel as linker. The substrates were characterized by UV-Vis and AFM after each deposition of Ag NPs. It was found that...

متن کامل

Thin films of Ag nanoparticles prepared from the reduction of AgI nanoparticles in self-assembled films.

A novel method for the preparation of thin films of Ag nanoparticles is reported. Using mercaptoacetic acid as the stabilizing agent, AgI nanoparticles were prepared in aqueous solution. And based on electrostatic interactions, the thiol-passivated AgI nanoparticles were assembled in a self-assembled film by alternative deposition with a cationic polyelectrolyte. Then the AgI nanoparticles in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 141 5  شماره 

صفحات  -

تاریخ انتشار 2016